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Abstract—Proper base placement is crucial for task execution
feasibility and performance of fixed-base manipulators, the dom-
inant solution in robotic automation. Current methods rely on
pre-computed kinematics databases generated through sampling
to search for solutions. However, they face an inherent trade-off
between solution optimality and computational efficiency when
determining sampling resolution—a challenge that intensifies when
considering long-horizon trajectories, self-collision avoidance, and
task-specific requirements. To address these limitations, we present
B*, a novel optimization framework for determining the optimal
base placement that unifies these multiple objectives without re-
lying on pre-computed databases. B* addresses this inherently
non-convex problem via a two-layer hierarchical approach: The
outer layer systematically manages terminal constraints through
progressively tightening them, particularly the base mobility con-
straint, enabling feasible initialization and broad solution space
exploration. Concurrently, the inner layer addresses the non-
convexities of each outer-layer subproblem by sequential local
linearization, effectively transforming the original problem into a
tractable sequential linear program (SLP). Comprehensive evalua-
tions across multiple robot platforms and task complexities demon-
strate the effectiveness of B*: it achieves solution optimality five
orders of magnitude better than sampling-based approaches while
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maintaining perfect success rates, all with reduced computational
overhead. Operating directly in configuration space, B* not only
solves the base placement problem but also enables simultaneous
path planning with customizable optimization criteria, making it
a versatile framework for various robotic motion planning chal-
lenges. B* serves as a crucial initialization tool for robotic ap-
plications, bridging the gap between theoretical motion planning
and practical deployment where feasible trajectory existence is
fundamental.

Index Terms—Base placement, sequential optimization.

1. INTRODUCTION

IXED-BASE manipulators continue to dominate robotic

automation due to their stability, precision, and payload
capacity [1], [2], despite emerging advances in mobile and
humanoid platforms [3], [4]. Supported by well-established
commercial offerings, they remain central to both industrial
applications and research advances. This progress is further
accelerated by sophisticated algorithms, from global motion
planning [5], [6], [7], [8], [9] to local motion generation [10],
[11], [12], which autonomously generate joint trajectories for
diverse tasks.

The effectiveness of these algorithms, however, depends crit-
ically on well-defined Cartesian trajectories within the ma-
nipulator’s workspace [13]. For fixed-base manipulators, this
workspace is determined by the base placement, making proper
base placement crucial to successful trajectory execution. The
significance of base positioning extends beyond basic reacha-
bility considerations—it directly influences the manipulator’s
ability to maintain continuous joint configurations between via
points, avoid self-collision, and optimize performance through-
out complete motion sequences.

This placement problem presents complex challenges due
to the highly non-convex nature of robot workspaces, charac-
terized by discontinuities, singularities, and regions of varying
dexterity [14], [15]. As illustrated in Fig. 1, optimal base place-
ment is highly sensitive to both the robot’s kinematic structure
and specific task requirements—a configuration that minimizes
trajectory length for one task may severely limit the robot’s
capabilities for another.

Current base placement methods face a fundamental limita-
tion: they rely on pre-computed kinematic databases generated
through discretized sampling of the robot’s workspace. These
databases—storing either direct mappings between end-effector
and base positions or collections of inverse kinematics (IK)
solutions (see Section II)—create an unavoidable trade-off.
High-resolution sampling produces better solutions but severely
impacts computational efficiency; low-resolution sampling

2377-3766 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on January 13,2026 at 03:56:11 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-3215-7152
https://orcid.org/0009-0009-4925-6983
https://orcid.org/0009-0003-9379-2122
https://orcid.org/0009-0007-2130-9110
https://orcid.org/0000-0002-8039-6679
https://orcid.org/0000-0001-5061-3575
https://orcid.org/0000-0001-7024-1545
mailto:yixin.zhu@pku.edu.cn
https://bstar-planning.github.io
https://doi.org/10.1109/LRA.2025.3604741

ZHAO et al.: B*: EFFICIENT AND OPTIMAL BASE PLACEMENT FOR FIXED-BASE MANIPULATORS

W base pose W target end-effector pose M unreachable pose

naths

KUKA iiwa robot

Franka robot

Fig. 1. Varied optimal base placement across robotic platforms and task
requirements. To demonstrate this, we present several examples using two widely
adopted manipulators—the KUKA iiwa (left) and Franka (right) robots. Our
examples encompass four key scenarios: (i) optimal base placement for a linear
path, (ii) a circular path using the base placement optimized for the linear path
(showing unreachable poses), (iii) optimal base placement for the circular path,
and (iv) optimal base placement that accommodates both paths. This comparison
illustrates the necessity of an efficient method to generate the optimal base
placement for each scenario.

offers speed but compromises solution quality and feasibility.
This limitation is intrinsic to the sampling-based paradigm.

Furthermore, as task complexity grows—such as requiring
more via points in a path, incorporating self-collision checks,
or meeting additional task-specific constraints—the scalability
of these methods is further compromised. This results in a
significant challenge: balancing precision and computational
speed becomes increasingly difficult regardless of search
algorithm sophistication. These limitations motivate the
development of a new framework that can address these
shortcomings and provide a more efficient and scalable solution
for base placement optimization.

We present B*, an optimization framework that overcomes
these limitations by unifying path-wide feasibility, self-collision
avoidance, and task-specific requirements into a continuous
optimization formulation. To tackle this highly complex
optimization, B* employs two-layer hierarchical strategies:
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e Quter layer with progressive constraint tightening: The
terminal optimization problem is temporarily reformulated
into a more tractable form through systematic constraint
relaxation, particularly the base mobility constraint. Ini-
tially, the fixed-base constraint is relaxed by introducing
three additional (DoFs) to model the base, akin to a mobile
manipulator. This relaxation ensures feasible initializa-
tion through guaranteed IK solutions while enabling the
exploration of a broader solution space. Constraints are
then gradually enforced, using the explored solutions as
effective initial conditions for subsequent optimization.

¢ Inner layer with sequential linearization: To address the in-
herent non-convexities within each sub-problem generated
by the outer layer, an iterative process of local linearization
is employed. This approach approximates the non-convex
problem by constructing a sequence of locally linear sub-
problems that are computationally tractable. Combined
with the progressive constraint-tightening strategy of the
outer layer, this hierarchical framework effectively trans-
forms the originally highly non-convex optimization prob-
lem into a tractable sequential linear program (SLP).

We quantitatively validate B* through comprehensive testing
in four manipulator types and 2400 randomly generated
paths of varying complexity levels. Operating directly in
configuration space without relying on pre-computed databases,
B* achieves: (i) perfect success rates across all test cases,
even for complex trajectories with multiple via-points and
self-collision constraints; (ii) solution optimality five orders of
magnitude better than sampling-based methods, particularly in
challenging scenarios requiring precise positioning; and (iii)
reduced computational overhead despite higher precision.

These results establish B* as a versatile framework for optimal
base placement, effectively bridging the gap between theoretical
motion planning and practical deployment. By operating directly
in configuration space, our approach not only solves the base
placement problem but also enables simultaneous path planning
with customizable optimization criteria. This capability opens
new possibilities for unified trajectory and base optimization
in robotic manipulation, particularly in applications requiring
high precision and efficiency.

Our contributions are twofold:

® A novel configuration-space optimization framework that
determines optimal base placement without precomputed
databases, ensuring solution optimality while maintaining
high success rates and computational efficiency.

e Comprehensive evaluation across multiple manipulators
(6-DoF to 7-DoF) and varying path complexities, demon-
strating the framework’s versatility and robustness in di-
verse scenarios.

The remainder of this paper is organized as follows: Section II
examines current base placement methods and their limitations
in detail. Section III presents the theoretical framework of B*,
including our novel optimization approach. Section IV provides
comprehensive experimental validation across various robotic
platforms and task complexities. Section V analyzes key perfor-
mance characteristics and discusses future research directions.
Section VI summarizes our findings and contributions.

II. RELATED WORK

A proper base placement is fundamental for fixed-base ma-
nipulators to execute tasks successfully. Research in this field
has evolved through several stages of increasing complexity,
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starting with simple reachability verification and progressing to
sophisticated trajectory-aware optimization.

Initial studies concentrated on single-point position reacha-
bility [16], leveraging the concept of reachability maps (RMs)
. These maps were precomputed by systematically sampling
the kinematic relationships between the base and end-effector,
expressed through homogeneous transformation matrices [14],
[17], [18]. While this foundational approach proved effective for
basic positioning, researchers recognized the need for optimiza-
tion criteria, leading to the integration of manipulability metrics
for base placement selection [19], [20]. The limitations of static
reachability maps in dynamic environments prompted the de-
velopment of adaptive reachability maps (RMs) [21]. Building
upon these advances, researchers expanded the framework to
address more sophisticated requirements, incorporating base
orientation considerations [17], [22] and multi-point reachability
analysis [23], [24]. Recent advances in learning-based method-
ologies have enabled neural networks to function as efficient
approximators for complex kinematic mappings, substantially
enhancing computational performance for single-point reacha-
bility analysis [25].

Despite significant advances in reachability mapping, a fun-
damental limitation remained: while these methods could verify
point-wise reachability, they could not guarantee the feasibility
of continuous trajectories between reachable points. This limita-
tion became particularly apparent in practical applications where
two points might be individually reachable yet connected by no
viable path due to kinematic constraints or environmental obsta-
cles. This crucial insight led to a paradigm shift in representing
kinematic relationships, replacing the traditional homogeneous
transformation matrix approach with an IK-based formulation.
This transition enabled a more comprehensive evaluation of
both point reachability and path feasibility within the robot’s
configuration space [26], [27].

However, even IK-based approaches remain constrained by
their reliance on pre-computed sampling-based databases and
search algorithms for optimal base placement. This dependence
on discrete sampling creates an inherent trade-off: higher sam-
pling resolution provides better precision but demands greater
computational resources and memory capacity, while lower
resolution sacrifices precision for efficiency.

In contrast to existing approaches, this paper introduces B*,
a novel optimization-based framework for determining optimal
base placement. Unlike traditional methods that depend on pre-
computed databases, B* operates directly within the robot’s con-
figuration space. Moreover, compared to learning-based meth-
ods, it offers broader applicability to manipulators with arbitrary
configurations. Through its unified optimization formulation, B*
achieves significant improvements in computational efficiency
while maintaining high success rates and solution optimality
across diverse task scenarios.

III. THE B* METHOD

We present B*, our optimization framework for fixed-base
manipulator placement. We first formalize the mathematical
foundations of optimal base placement (Section III-A), then
introduce a two-layer optimization strategy that decomposes this
non-convex problem into tractable sub-problems (Section III-B).
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A. Problem Formulation

We formulate the base placement problem for fixed-base
manipulators, intended to be mounted on a flat surface (whether
horizontal or slanted), as an optimization problem. For a robotic
manipulator mounted on a fixed base, we seek to compute
the optimal base placement q° = [2%, y*,0°]T € SE(2) (SE (k)
denotes special Euclidean group in k£ dimensions) that enables
successful task execution. The manipulation task comprises an
ordered sequence of desired end-effector poses in SE(3):

7wt] S RtX67 (1)

where each x; € RS encodes position and orientation param-
eters at time step 7. These task poses can be provided directly
by a human operator or generated via interpolation methods for
smooth and continuous motion between successive steps.

For any candidate base placement g°, the manipulator must
achieve feasible joint configurations ¢7% = [q1,qs,---,q] €
R®*™ to reach each target pose x;, where n is degree of freedom
(DoF) of the manipulator. The optimization problem requires
finding both an optimal base placement and a sequence of valid
joint configurations that satisfy the manipulator’s kinematic
constraints. This leads to the following formulation:

L1t = [231,11327 s

minimize f(q%, q7,)
subjectto g;(q°,q7%) =0, i=1,2,..., Neg

hi(@®,q7) <0, i=1,2,... Nineg  (2)

where f is a scalar objective function, and g; and h; represent
equality and inequality constraints, respectively. We detail these
objectives and constraints below.

Objective Function: The primary requirement in base
placement optimization is satisfying reachability constraints
while maintaining flexibility in objective function formulation.
We present two common formulations. The simplest is the
feasibility-only approach:

fl@.at) =1, 3)

which transforms the optimization into a feasibility test, seeking
any valid solution that satisfies all constraints.

For tasks requiring efficient execution, we can further mini-
mize path length:

t—1
f@"ai) =Y llait — "l 4)
i=1

We utilize non-differentiable /; penalties, although smooth /5
penalties produce comparable results [9]. The inclusion of the
¢ term elegantly reformulates the problem into an equivalent
linear programming task with linear constraints. By introducing
auxiliary slack variables z; with constraints z; > x;, z; > —x;
and z; > 0, each absolute value term |z;| is transformed into a
linear program equivalent. This choice also ensures compatibil-
ity with a wide range of optimization solvers [28].

Equality Constraints: The primary equality constraints ensure
the end-effector reaches all targeted poses. Let (g’ ") :
SE(2) x R™ — RS denote the forward kinematics mapping
from the base and joint configuration to end-effector pose. We
enforce exact pose achievement through:

g1:¢ (¢ a)") =z, i=12,... t )
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Inequality Constraints: In addition to achieving each pose, the
manipulator must respect several physical and safety constraints.
First, base placement q” € SFE(2) must remain within allowable
position and orientation ranges determined by working condi-

tions. Let ¢"”" and qu denote the lower and upper bounds,
respectively:

pm p M

<d"<q", (6)
where < represents a element-wise “less than or equal to”
relationship between vectors.

Next, each joint configuration g;" must remain within its
feasible range, bounded by mechanical joint limits. With lower
and upper bounds denoted as ¢™™ and g, we impose:

i=1,2,...,t (7)

hi:q

hy:q™™ < q" < g™,

Finally, collision-free motion is enforced through:
hs:sd(q®,q™) >0, i=1,2,...,t, (8)

where the signed distance sd(-) as defined in [29] represents
the minimal translation distance required to alter the spatial
relationship between objects. This formulation addresses self-
collision avoidance and can be extended to obstacle avoidance
by incorporating obstacle geometry information.

B. Two-Layer Optimization of B*

The optimization problem presented above is highly non-
convex and challenging to solve directly. We address this com-
plexity through a hierarchical two-layer optimization struc-
ture. Specifically, the inner layer manages local non-convexity
through iterative convex approximations of the original problem.
The outer layer employs a novel approach by initially treating the
base as three additional DoFs, analogous to a mobile manipula-
tor. This formulation ensures solution feasibility while enabling
comprehensive exploration of the solution space. By progres-
sively increasing penalties on base movement, the algorithm
converges to a fixed base configuration, effectively balancing
thorough solution space exploration with fixed-base constraint
satisfaction.

Outer Layer—Base Relaxation: The complexity of optimiza-
tion stems largely from finding an initially feasible solution
under fixed base constraints. We address this through a strategic
relaxation approach.

We first solve a relaxed problem by treating the fixed base as
mobile, transforming the timestep-invariant base configuration
q" into a time-varying sequence q°,, effectively introducing
three additional DoF per timestep. To ensure convergence to a
fixed base configuration, we introduce a base movement penalty
with an iteration-dependent coefficient x(j) that increases with
outer loop iteration j.

The modified objective function f'(g5%.,, g7; 11(j)) becomes:

t
£1(@h atsn(i) = F(dh aly) + () D lad — a°llh.
i=1

9
where g is the arithmetic mean of base poses across all steps.
We employ ¢, penalties over /5 as they more effectively drive the
second term to zero with matching coefficients 1(j), ensuring
convergence to a stable configuration. The coefficient p(j)
progressively increases across outer loop iterations, gradually
enforcing the fixed base constraint.
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All constraints involving the fixed base g” must be reformu-
lated for the relaxed problem. Each instance of q” in the original
constraints is replaced with its time-indexed counterpart q? at the
corresponding timestep . For example, the base limits constraint
becomes:

hig" <qt <™, i=12.. .t (10)
These constraints are subsequently transformed into penalty
terms to accommodate potentially infeasible initial conditions,
ensuring the algorithm can start from arbitrary initial states while
maintaining numerical stability.

Inner Layer—Linearization: Even after relaxation, the prob-
lem’s inherent non-convexity poses significant challenges for
optimization. Drawing inspiration from sequential program-
ming [30], we address this through iterative convex approxi-
mations within trust regions.

Given anon-convex function ¢(x), we construct its convex ap-
proximation ¢.(z) through first-order Taylor expansion around
the current point zq:

be(x) = p(20) + d(0) (z — 20), (11)

where ¢(x() represents the first-order derivative at 2;9. The trust
region size adapts based on approximation quality—expanding
when the approximation performs well and contracting when it
poorly represents the original function [30].

This two-layer framework combines base relaxation with
local linear approximation to transform the non-convex opti-
mization into a series of tractable linear programs (LPs). The
outer iterations broadly explore the solution space for suit-
able initialization, while inner iterations efficiently traverse the
current non-convex space to determine a high-quality solution
specifying fixed base placement and joint configurations.

IV. EVALUATIONS

We evaluate B* through comprehensive simulation studies
assessing its effectiveness in determining optimal fixed-base
manipulator poses across diverse tasks. Our evaluation com-
prises two components: First, Section IV-B provides qualitative
insights into B*’s operational principles through representative
examples that illustrate its behavior across different scenarios.
Second, Section IV-C presents detailed quantitative comparisons
against baseline methods using extensive randomly generated
test cases of varying complexity.

A. Implementation Details

B* optimizes for minimal-length task completion paths as
formalized in Eq. (4). The process initializes using an IK solution
incorporating 3 additional base DoFs. For the first point x,
random initialization ensures comprehensive solution space ex-
ploration. Subsequent points are initialized using the preceding
point’s IK solution to promote trajectory continuity.

The optimization problem is implemented using the COPT
solver [31]. Given the established correlation between initial-
ization quality and sequential programming performance [9],
B* employs up to 10 retry attempts with different initializations
when needed.
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Fig. 2.

Visualization of B*’s optimization process over multiple iterations. Each row shows a different test scenario, demonstrating the method on both the KUKA

iiwa and Franka robots performing compound trajectories. Starting from an initial configuration with relaxed base constraints (leftmost column), the optimization
progressively constrains the base position through increasing penalty coefficients (middle columns), until converging to a single fixed base placement (rightmost
column). During intermediate steps, some constraints, such as the end-effector (EE) constraint (Eq. (5)), may temporarily violate the target states as the algorithm
balances between base convergence and task constraints. More examples and full optimization sequences are available in the Supplementary Video S1.
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Fig. 3. Success rate comparison between baseline methods and B*. While

baseline methods with more IK samples show higher success rates at low
complexity levels, their performance deteriorates sharply as the complexity level
[ increases. With just 10 samples (b-10), the baseline struggles even at level 1,
while 1000 samples (b-1000) maintain moderate success through level 2 before
failing. In contrast, B* maintains 100 % success rate across all complexity levels
[ (see Eq. (14)).

B. Qualitative Results

We evaluated B* through experiments on a representative
trajectory type, incorporating ground collision avoidance con-
straints. The type comprises complex compound paths that
combine linear and circular segments, requiring 64 uniformly
spaced end-effector poses. To demonstrate generalizability, we
tested B* on two industrial manipulators with distinct kinematic
structures and workspace characteristics: the Franka Emika
Panda and KUKA LBR iiwa.

Fig. 2 captures the optimization progression through four
key iterations for each task category. To maintain visual clar-
ity, we show selected configurations—7 poses for compound
paths. Starting from the leftmost column with initial IK solu-
tions using relaxed base poses (Section IV-A), the optimization
proceeds through intermediate stages where increasing penalty

N b-10 EEEEN b-100 EENEEN b-1000 EENEN B*
10° 10°

il
.
IS
?

<

10¢

<

1 (wur) Ayjewndo uogm[os s

baseline solution optimality (mm) |,
S

-4 -9
10 1 2 3 4 5 6 10

complexity level

Fig.4. Solution optimality (ATE) comparison between baseline methods (left
axis) and B * (right axis) across complexity levels. Baseline methods, even with
increased IK samples, achieve only millimeter-level precision due to sampling
resolution limits. B* achieves five orders of magnitude better precision by
operating in continuous configuration space. Box plots show error distributions:
boxes indicate interquartile range (IQR), center lines represent medians, and
whiskers extend to 1.5x IQR beyond quartiles.

coefficients drive convergence toward a fixed base. During this
process, the robot may temporarily deviate from target end-
effector poses due to our soft constraint formulation. The right-
most column shows the final solution: a single, collision-free
base placement that enables the robot to reach all desired end-
effector poses successfully.

C. Quantitative Results

We conducted extensive quantitative evaluations comparing
B* against baseline approaches across varying task complexities
and robot platforms. Our evaluation framework consists of four
key components: (i) a systematic test data generation process
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Fig. 5. Runtime comparison between baseline methods and B* across com-

plexity levels. While baseline methods show increased runtime with higher IK
numbers, B* demonstrates superior efficiency with linear scaling (fit shown:
log; o (time) = 0.376 log, 2! — 0.907). Box plots in the same format as Fig. 4
illustrate runtime distributions, with outliers above 100 s excluded for visual-
ization clarity.

covering diverse workspace configurations, (ii) implementa-
tion of established baseline methods using pre-computed 1K
databases, (iii) comprehensive performance metrics measuring
success rate, solution optimality, and computational efficiency,
and (iv) controlled testing environment for fair comparison.

Large-Scale Test Data Generation: To ensure rigorous eval-
uation, we developed a systematic approach for generating
test datasets that comprehensively span each manipulator’s
workspace across varying complexity levels. Our data gener-
ation process consists of three key components.

The first component focuses on initial configuration sampling.
We generate the start pose x1 by uniformly sampling the joint
space to achieve comprehensive coverage:

= (¢"a). a ~U(q""q"M). (2
q" merely accounts for a planar transformation in SE(2) without
affecting workspace characteristics. Therefore, we set q¢° to zero
vector without losing generality.

The second component generates workspace-valid pose se-
quences. To maintain kinematic feasibility, we construct sub-
sequent poses through incremental perturbations in joint space.
Each pose builds upon its predecessor through small displace-
ments §;:

k—1
=0 g al+> & |, &~NwD), 13
j=1

where p € R™ has all entries equal to 0.01 rad and X =
diag(0.0052) € R™ ™, These parameters were empirically se-
lected for effective workspace exploration. We validate trajec-
tory feasibility using NVIDIA Isaac Sim’s Luna module.

The third component implements multi-level complexity scal-
ing. For systematic evaluation across different scales, we gener-
ate pose sequences of varying lengths based on complexity level
l:

t=2' leNT. (14)
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We applied this framework to four widely-used manipulators:
Franka Emika Panda, Kinova Gen3, KUKA LBR iiwa, and Uni-
versal Robots UR10, covering both 6-DoF and 7-DoF manipula-
tors. For each robot-complexity combination (I = 1,...,6), we
generated 100 distinct sequences, yielding 2400 comprehensive
test cases.

Baseline Methods: We evaluated B* against search-based
approaches utilizing pre-computed IK solution databases. These
baseline methods treat the base position’s three planar DoF as
additional joints in the IK formulation. For each target point in a
sequence, we employ CuRobo [32] to generate ~y collision-free
IK solutions comprising both manipulator joint configurations
and base positions. Using this IK dataset, the baseline methods
search for feasible joint paths allowing point-to-point movement
while maintaining the base position within a confined space. We
implement this search using a breadth-first algorithm to ensure
global optimality for fair comparison with the optimization-
based method B* in solution optimality. To investigate the
impact of solution sampling density, we evaluated three base-
line configurations: b-10, b-100, and b-1000, corresponding to
~ € {10,100, 1000} IK solutions per target point.

Metrics: To comprehensively evaluate performance across
methods, we employ three complementary metrics that assess
different aspects of solution quality and efficiency:

® Success rate: As our primary effectiveness metric, success
rate evaluates algorithmic reliability using well-defined
binary criteria. For B*, success is determined by optimiza-
tion convergence to a valid solution. Baseline methods
must satisfy two conditions for success: maintaining base
position variations within specified tolerances (0.01 m for
translations and 0.05 rad for rotation), and completing the
search within a 10 min time limit.

e Solution optimality: To rigorously assess solution optimal-
ity, we quantify base path deviation using the absolute
trajectory error (ATE) [33]. This metric computes the root-
mean-squared error of Lie algebra components across all
pairwise base placement combinations.

® Runtime: Computational scalability serves as a crucial
criterion for practical deployment in complex scenarios.
We analyze time efficiency by measuring total computation
times across varying complexity levels. For B*, this encom-
passes the complete runtime of all optimization attempts.
For baseline methods, we include both the time required
for IK solution generation and the subsequent optimal base
placement search process.

Test Environment: The implementation of all methods uses
Python as the primary programming language, with all compu-
tations performed exclusively on the CPU using an AMD Ryzen
9 5950X processor supported by 64 GB of RAM.

Results: Our experimental evaluation reveals clear perfor-
mance patterns across different methods. As shown in Figs. 3
and 4, baseline approaches are effective for simple scenarios but
degrade significantly with increasing sequence length. While
using more IK solutions improves both success rate and solu-
tion optimality, this comes at a substantial computational cost.
This trade-off is evident in Fig. 5, where higher numbers of
IK solutions result in longer runtime due to increased search
complexity.

B*, in contrast, achieves optimal performance across all robots
and complexity levels, maintaining consistent success rates as
demonstrated in Fig. 3. Through direct configuration space
optimization, B* overcomes sampling resolution limitations,
achieving five orders of magnitude improvement in solution
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(b) a linear path

(a) apparatus

Fig. 6.
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Real-world validation. (a) The effectiveness of B* is demonstrated on a 7-DoF Kinova robot in a real-world setting. With accurate kinematic and collision

models, the joint path generated by B* is successfully executed, achieving the target pose. This is illustrated through the execution of a linear path (b), a circular
path (c), and a compound path (d). The complete execution process is available at the Supplementary Video S2.

TABLE I
SUB-PROCESS RUNTIME OF B* IN MILLISECONDS

TABLE II
# OF INITIALIZATION RETRIES ACROSS COMPLEXITY LEVELS

Outer Layer

79.350+115.193
132.652 £188.241

Inner Layer

20.516 +3.898
2 9.2164+5.130  25.4914+4.870

3 13.665+4.725  35.049+6.178 219.044 4+ 304.350
4 24.507+£8.162  60.584+£10.931  451.903 £564.226
5
6

Level Initialization

1 6.255 4 3.561

46.3864+14.869 114.6144+21.725 1032.060+1191.717
96.3144+42.203 269.816+65.030 2838.154 +£3123.153

optimality (Fig. 4). These substantial gains come with improved
computational efficiency—B* maintains faster completion times
than baseline methods while scaling linearly with scenario com-
plexity (Fig. 5) with detailed sub-process run time in Table I.

V. DISCUSSIONS AND FUTURE WORK

Our study highlights B*’s effectiveness in efficiently de-
termining optimal base placements for manipulation tasks.
Traditional approaches relying on pre-computed kinematic
databases show a clear dependence on the number of IK so-
lutions (Figs. 3 and 4). While infinite sampling could theo-
retically achieve perfect results, this is impractical due to sig-
nificant computational and storage overhead, especially in the
breadth-first search used in baseline methods to guarantee opti-
mality. Although alternative search methods like depth-first or
heuristic search can reduce resource demands, they compromise
optimality. More importantly, regardless of the search method
used, these approaches fail to address the fundamental issue of
sampling resolution inherent in sampling-based methods.

B* tackles these challenges with a fundamentally different
approach: direct optimization in the robot’s configuration space.
This method achieves a five-order-of-magnitude improvement
in solution optimality over baseline methods while maintaining a
perfect success rate and linear computational scalability. Beyond
base placement optimization, the B* also serves as a path planner
with customizable cost functions, enabling the optimization of
additional criteria, such as minimal path length, as demonstrated
in this study.

B* incorporates constraints such as joint limits, ground col-
lisions, and self-collisions into the optimization. With accurate
kinematic and collision models, its results are transferable to
real-world applications. To validate this, we applied B* to a

level 1 2 3 4 5 6
# 1.1+0.3 1.1+0.3 1.1+04 1.34+0.8 1.4+1.0 2.0+2.0

physical 7-DoF Kinova robot with target poses shown in Fig. 1.
For convenience and without compromising rigor, we transform
the world coordinate frame to align with the base poses calcu-
lated by B* in each scenario. The generated joint configurations
were directly executed on the physical robot, with end-effector
poses verified through the Kinova official interface. The results,
presented in Fig. 6, confirm that all configurations are executable
and achieve the desired target poses. The complete execu-
tion process and detailed application scenarios are provided in
the Supplementary Video S2 and Supplementary Video S3 ,
respectively.

However, the current deployment of the B* exhibits limita-
tions in initialization, which is critical for optimization conver-
gence in highly non-convex problems. Even with advanced con-
vexification techniques, initialization remains an open question
in the broader optimization field [15]. In this study, we demon-
strate the effectiveness of the B* using random initialization,
achieving notable success even with a 7-DoF manipulator and
64 target end-effector poses. However, task complexity increases
the number of required initialization retries, as shown in Table II.
This escalation arises from the growing number of optimization
variables, which impacts performance in two ways: it prolongs
the time required to solve individual optimization instances
and increases the total solution time due to additional retries,
as illustrated in Fig. 5. In more severe scenarios, like highly
constrained environments, the random initialization could lead
to failure.

Given these challenges, developing a more sophisticated ini-
tialization method for B* emerges as a promising direction for
future work. Moreover, while this study focuses primarily on
reachability and collision constraints, future work will explore
incorporating additional real-world constraints, such as forces
exerted at the end-effector, mounting limitations, and dynamic
obstacles in the environment. These extensions will enhance
B*’s applicability to real-world scenarios.
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VI. CONCLUSION

In this paper, we present B*, a novel optimization frame-
work that improves both computational efficiency and solution
optimality for base placement determination in fixed-base ma-
nipulators, outperforming traditional sampling-based methods.
B* employs a two-layer optimization strategy: an outer layer
for relaxed base exploration and an inner layer that addresses
non-convex constraints using iterative local linearization.
This approach effectively tackles challenges associated with
long-horizon tasks, task-specific requirements, and self-
collision avoidance. Furthermore, by operating directly in the
configuration space, B* eliminates reliance on precomputed
kinematic databases, providing a scalable and versatile solution
for a wide range of robotic applications.
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